Revised abstract for Testcase C3.1 by Marcel Wallraff and Tobias Leicht, DLR, Braunschweig Marcel.Wallraff@dlr.de, Tobias.Leicht@dlr.de

1 Code description

Our DG code implements higher order discontinuous Galerkin methods on unstructured mixed-element curvilinear meshes.

Parameter settings for the test case will be:

- Discretization/Higher order capability:
 - Hierarchical polynomial basis functions of polynomial degrees 1-3.
 - Basis definition in physical space.
 - Roe flux and an entropy fix is used in order to ensure non-vanishing dissipation.
 - BR2 scheme
 - turbulence model
 - * Spalart-Allmaras (2012)
 - * Wilcox $k\omega$ (1988)
- Solver capability
 - Non-linear p- or h-multigrid with a Backward–Euler smoother.
 - As timestep control a *switched evolution relaxation* (SER) technique is employed to modify the CFL number during the solution process.
 - Linear solver: GMRES with a linear p- or h-multigrid preconditioner.
 - Smoother for the linear multigrid is a line based Jacobi scheme.

2 Case summary

Mesh hierarchy with meshes from the DLR:

- structured hexahedral meshes
- farfield distance approx. 50 chord lengths
- 2108, 8432, 33728 and 134912 elements

Tau Bench on the DLR CASE-CLUSTER: 8.4 sec

The computations are based on $\gamma=1.4$ (ratio of specific heats) for air. The Prandtl number was set to Pr=0.72 in contrast to the Prandtl number of 0.71 specified in the test case description. Moreover, Sutherland's law is used but a reference temperature of 290K is applied in contrast to the requested 288K.

3 Results

The FV results, marked with a \triangle , are taken from the second HOW. Note that, the meshes of these FV results differ from our mesh hierarchy. All computations use the Spalart-Allmaras turbulence model.

Figure 1: Left: Lift and drag in correlation to work units. Right: Lift and drag in correlation to DoF.

element no.	polynomial degree	C_L	C_D	DoF	work units	processors
2108	2	3.32903	0.138278	12648	47.60	2
8432	2	4.0038	0.0639985	50592	313.66	4
33728	2	4.14119	0.049819	202368	3455.24	8
134912	2	4.16634	0.0472271	809472	39237.52	16

Table 1: Data of the MDA 30P30N (p=2) SA-computations on a structured mesh hierarchy.

 $C_p\text{-distribution}$ on $33\,728$ (blue) & $134\,912$ (red) element meshes.